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Abstract

Combined forced and free flow in a vertical rectangular duct is investigated for laminar and fully developed regime.
The velocity field, the temperature field, the friction factor and the Nusselt number are evaluated analytically by em-
ploying finite Fourier transforms. The thermal boundary condition considered is an axially uniform wall heat flux and a
peripherally uniform wall temperature, i.e. an H1 boundary condition. The necessary and sufficient condition for the
onset of flow reversal is determined either in the case of upward flow in a cooled duct or in the case of downward flow in
a heated duct. The special case of free convection, i.e. the case of a purely buoyancy-driven flow, is discussed. The
occurrence of effects of pre-heating or pre-cooling in the fluid is analysed. It is pointed out that although these effects
occur in rectangular ducts, they are not present either in circular ducts or in parallel-plate channels. © 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

In a recent paper [1], an investigation of fully devel-
oped mixed convection in a vertical rectangular duct is
presented. In this paper, an analytical solution of the
energy and momentum balance equations is obtained,
by employing the finite Fourier transform method. The
solution refers to a class of thermal boundary conditions
such that at least one of the four walls of the rectangular
duct is kept isothermal. Thermal boundary conditions in
this class imply the axial invariance of the temperature
distribution in the fully developed region. Obviously,
there are thermal boundary conditions of interest in
engineering applications which are not included in the
above-defined class. For instance, a thermal boundary
condition often invoked in duct-flow heat transfer is the
H1 boundary condition. As is well known, the HI
boundary condition corresponds to an axially uniform
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wall heat flux and a peripherally uniform wall tem-
perature. Obviously, under this boundary condition, no
axial invariance of the temperature distribution in the
fully developed region occurs, so that the H1 case does
not belong to the class investigated in [1]. An extension
of the analysis presented in [1] to include the HI
boundary condition is the purpose of the present paper.

As is well known, heat exchangers technology, the
design of solar collectors or the modelling of cooling
processes in electronic devices involve convective flows
in non-circular ducts. In most cases, these applications
imply conditions of uniform heating of a duct which can
be modelled either by the H1 boundary condition or by
the H2 boundary condition. The latter case corresponds
to a wall heat flux both axially and peripherally uniform.
The subject of forced and mixed convection in rec-
tangular ducts with uniform heating conditions has been
widely treated in the literature. An accurate review on
this subject can be found in [2]. Among the earlier in-
vestigations in this field, the paper by Han [3] presents
an analytical solution for combined forced and free flow
in a vertical rectangular duct, which refers to the fully
developed region and to an H1 boundary condition.
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Nomenclature

a, b length of the rectangle sides

Cum dimensionless coefficients defined by
Eq. (36)

D = 2ab/(a + b), hydraulic diameter

f Fanning friction factor, defined in
Eq. (23)

F dimensionless quantity defined by
Eq. (41)

23 dimensionless quantity defined by
Eq. (42)

g magnitude of the gravitational
acceleration

Gr Grashof number, defined in Eq. (15)

(Gr/Re)  threshold value of Gr/Re for the onset of

flow reversal

value of Gr/Re corresponding to free

convection

(Gr/Re)" value of Gr/Re corresponding to the first
singularity of the solution

(Gr/Re), threshold value of Gr/Re for the onset of
pre-heating (pre-cooling) effects

k thermal conductivity

n, m positive integers

Nu Nusselt number defined by Eq. (25)

Nuy Ty-based Nusselt number defined by
Eq. (27)

p pressure

P difference between the pressure and

the hydrostatic pressure
G average wall heat flux
R(x,y) arbitrary function

Re Reynolds number, defined in Eq. (15)

t dimensionless temperature, defined in
Eq. (15)

T temperature

To mean temperature in a duct section

Ty wall temperature

u dimensionless velocity, defined in Eq. (15)

U Z-component of the fluid velocity

Uy mean fluid velocity in a duct section

W(x,y) arbitrary function

X,y dimensionless coordinates, defined in
Eq. (15)

X, Y, Z rectangular coordinates

Greek symbols

o thermal diffusivity

p volumetric coefficient of thermal
expansion

AT = g,,D/k, reference temperature difference

A dimensionless parameter defined by
Eq. (15)

n dimensionless parameter defined by
Eq. (15)

I dynamic viscosity

v kinematic viscosity

0 mass density

% mass density for 7' =T

1 = b/a, aspect ratio

Twm average wall shear stress

Superscript and subscript

= double finite Fourier sine transform
defined by Eq. (28)
b bulk value

However, the analysis presented in [3] is not complete,
since no discussion of the phenomenon of flow reversal
is performed. As is well known, flow reversal occurs in a
given duct section if there exist positions where the local
fluid velocity has a direction opposite to the mean flow.
Moreover, the mathematical model of mixed convection
employed in [3] is not completely satisfactory as is
pointed out in Section 4 of the present paper.

More recently, investigations on mixed convection in
vertical rectangular ducts or parallel-plate channels have
appeared in the literature, involving in most cases the
use of numerical or experimental methods. Ingham et al.
[4] employ a fully implicit finite difference scheme to
obtain a solution for the velocity and temperature field
in the entrance region of a vertical parallel-plate channel
with uniform and unequal wall temperatures. Gau et al.
[5] provide an experimental investigation of the
phenomenon of flow reversal in a vertical channel, by
employing flow visualization in a wind tunnel. Cheng

et al. [6] obtain a numerical solution of the mass, mo-
mentum and energy balance equations in the entrance
region of a vertical rectangular duct such that one wall is
maintained at a higher temperature and the other three
walls are kept isothermal at a lower temperature. These
authors employ an enhanced FLARE method in order
to encompass also situations involving flow reversal. A
wide analysis of various modifications of the FLARE
method for two-dimensional mixed convection in a
vertical parallel-plate channel including flow reversal is
performed by Cheng et al. [7]. Lee [8] utilizes the vor-
ticity—velocity formulation to obtain a numerical solu-
tion of the balance equations for buoyancy-induced heat
and mass transfer in a vertical rectangular duct. This
author assumes that three duct walls are adiabatic, while
the fourth is kept at a uniform temperature or at a
uniform heat flux. By employing analytical methods,
McBain [9] performs an investigation of buoyancy-in-
duced flow and mass transfer in the fully developed
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region of a vertical rectangular duct with two isothermal
walls and two adiabatic walls. The numerical study
presented in [6] has been recently extended to consider
mixed convection in a vertical rectangular duct such that
one or more walls are kept isothermal at a higher tem-
perature while the others are isothermal at a lower am-
bient temperature [10].

The aim of the present paper is to study mixed con-
vection heat transfer in a vertical rectangular duct sub-
jected to an HI1 thermal boundary condition. The
analysis refers to the region of fully developed flow
where the velocity field is parallel. An analytical method
involving finite Fourier transforms is employed to yield
the solution of the coupled momentum and energy bal-
ance equations. For the cases of either upward flow in a
cooled duct or of downward flow in a heated duct, the
necessary and sufficient condition for the onset of flow
reversal is obtained. A novel feature of fully developed
mixed convection in vertical ducts which does not occur
either in parallel-plate channels or in circular ducts is
described. In particular, it is shown that a sufficiently
intense flow reversal in a vertical rectangular duct may
yield a pre-heating or pre-cooling of the fluid. In other
words, even if the walls are heated, there may exist po-
sitions in a given duct section where the local tempera-
ture is higher than the wall temperature. A description
of this effect and a statement of the necessary and suf-
ficient condition for its onset are given in Section 5 of
this paper.

2. Governing equations

The system under analysis is a Newtonian fluid
flowing in an infinitely long vertical duct with a rec-
tangular cross-section. A drawing of the system exam-
ined and of the coordinate axes is reported in Fig. 1. The

Fig. 1. Drawing of the duct and of the coordinate axes.

flow is assumed to be steady, laminar and parallel, i.e.
only the Z-component U of the fluid velocity U is non-
vanishing. The thermal conductivity &, the thermal dif-
fusivity o« and the dynamic viscosity u are considered as
constant. Moreover, the effect of viscous dissipation is
neglected and the Boussinesq approximation is em-
ployed. Since the Boussinesq approximation implies that
the velocity field is solenoidal, i.e. that 0U/0Z = 0, one
can conclude that U does not depend on Z. Therefore,
the X-momentum balance equation, the Y-momentum
balance equation, the Z-momentum balance equation
and the energy balance equation for the fluid can be
written as

orP oP

x-% w0 (m)
oP *U d*U

08T = Tp) 7&+N<76X2 +76Y2> =0, 2)

oT RPr  °T  O'T
( ) 3

Zz "tttz

The scalar field P = p + g,gZ is the difference between
the pressure and the hydrostatic pressure and 7; is a
reference temperature which should ensure that the lin-
ear relation between the local mass density and the local
temperature

e =gl = AT - 1)) 4)

is a fair approximation. Whenever the reference tem-
perature T, changes in the streamwise direction, the
Boussinesq approximation can still be employed pro-
vided that the dependence of g, on Z is neglected. This
assumption [11,12] is widely employed in the literature if
the thermal boundary conditions imply a net heating or
cooling of the fluid. In [13], it is shown that the optimal
choice of Ty in order to fulfil Eq. (4) is the mean tem-
perature in a duct section, namely

1 a b
T =— YT.
] ab/de/Od (s)

On account of Eq. (1), P is independent of both X and Y.
If Eq. (2) is derived with respect to Z, one obtains

or 4, 1 d’p
=+t ——-=. (6)
0Z dzZ = g,gf dz?
As a consequence of Eq. (5), by performing a double
integration of both sides of Eq. (6) with respect to X and
Y in the domain {0 < X <a, 0< Y < b}, one is led to the
following conclusions: dP/dZ is a constant; 07'/0Z co-
incides with d7;/dZ.

The local energy balance given by Eq. (3) can be
rewritten as

u )

dn,_ (0T T &%
dz  “\ox? or?2 dzz )’
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The rate of change d7,/dZ can be determined when the
thermal boundary conditions are given.

Let us assume that an axially uniform heat flux is
prescribed on the duct wall and that the wall tem-
perature is peripherally uniform, i.e. that an HI
boundary condition holds. Then, while the wall tem-
perature Ty, depends only on Z and is a priori unknown,
the peripherally averaged wall heat flux ¢, is a
prescribed constant which can be expressed as

k bror
Gw = = — dy
I 2(a+b) {/0 (aX X=a X:O)
“ror or
[ (&L F)e] ®
o \9oY|,_, 0OYl|y,
By employing Egs. (5) and (8), a double integration of

Eq. (7) with respect to X and Y in the domain
{0<X <a, 0K Y <b} yields

_ar
oX

dTo d2T0 4flqw
Yz "%z "

©)

where D = 2ab/(a + b) is the hydraulic diameter and U,
is the mean velocity given by

1

Up = —
0 ab 0

a b
dx / dy u. (10)
0
Since 07 /0Z coincides with d7,/dZ, one can conclude
that 07 /0Z depends neither on X nor on Y. Then, if one
evaluates the derivative with respect to Z of both sides of
Eq. (7), one obtains

2 3
&¢n 4Ty, (11)

a2~ Yz
On the other hand, if one evaluates the derivative
with respect to Z of both sides of Eq. (9), one ob-
tains

&én 4’

A comparison between Egs. (11) and (12) allows one to
conclude that either U is uniform in a duct cross-section
or d*7, /dZ? is equal to zero. The former item can be
ruled out since, on account of the absence of wall slip, it
would imply the trivial case of a fluid at rest. Therefore,
the non-trivial analysis which will be performed in the
following is based on the condition d*T;/dZ* = 0. In this
case, Eq. (9) yields

dTy _ 4ag,
dz kDU’

(13)

and, as a consequence, Eq. (7) can be rewritten as

T T  4q,
CLL O 2wy 14
o Tarr "o Y (

=

Let us define the dimensionless quantities

,_T-T U
= u=—
AT U’
X Y b
X =—, y=—- g=—,
a a a
15)
D ATD? (
R :Uo 7 Gr:gﬁ -
v vV
_702 % _T()—Tw
MR A T AT

where AT = g,D/k is the reference temperature differ-
ence. Obviously, since 07 /0Z depends neither on X nor
on Y, it coincides with d7,,/dZ. Therefore, the dimen-
sionless temperature ¢ depends only on x and on y and
the dimensionless quantity # is a constant. On account
of Eq. (15), Egs. (2) and (14) can be rewritten as

Pu ®u (1+0) Gr
LSRR (16)
2 2 2

ot 0%t (1+J)u:O. (17)

a2 g o
The boundary conditions fulfilled by the dimensionless

velocity u(x,y) and by the dimensionless temperature
t(x,y) are as follows:

u(0,y) =0, u(l,y) =0,

M(X, 0) = 07 M(.}C7 O') = 0, (18)
t(ovy) :07 t(l,y) :07
t(x7 0) = 0, l‘()C7 G) =0. (19)

On account of Egs. (5) and (10), two additional con-
straints must be fulfilled by the dimensionless functions
u(x,y) and #(x,y), namely

/Oldx/oﬂdy u(x,y) = o, (20)
/Oildx/o.ady t(x,y) = on. (21)
The average wall shear stress is given by
o= ] orh oo

+ /O Z—l}{ y:odX - /0 2—(}{ y:bdX}. (22)

By employing Eq. (22), the Fanning friction factor can
be expressed as

2Twm
/= pOUUZ
20 ” Qu 7 Qu
= —| d 7/ —1| d
(1 +a)2Re [/o ox |, 7 0 Ox |, 7
1 1
+/ Gu dx—/ gyl (23)
o Oy =0 o Oy V=0
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As a consequence of Egs. (16) and (21), it is easily shown
that a simple relation between the parameters f and 4
occurs, namely

2622

S Re = (1+0)

3 (24)

The peripherally averaged and axially local Nusselt

number can be easily evaluated as
@b AT 1

(T —To)k To—Tp

Nu= (25)
where the bulk mean value of any quantity W is defined
as

1 a b
W, = /dX/ dywu
ably Jo 0

1 o
= l/ dx/ dy W u. (26)
o Jo 0

Some authors [11,12] use an alternative definition of the
Nusselt number based on the choice of T, as the refer-
ence fluid temperature. This alternative definition may
lead to less complicated mathematical expressions when
dealing with mixed convection problems. Therefore, one
may employ a parameter Nu, given by

gD AT 1

N = _ -1 27
o T,—Ty, 7 @7)

3. Analytical solution

The dimensionless velocity field u(x,y) and the di-
mensionless temperature #(x,y) can be evaluated by
employing the finite Fourier transform method. The
double finite Fourier sine transform of an arbitrary
function R(x,y) in the rectangular domain {0 <x<1,
0<y<a} is defined as [14]

E(n,m) = /01 dx/oq dyR(x,y) sin(nmx)
mrry)7 (28)

[

X sin(

where n and m are positive integers. By employing the
properties of the finite Fourier sine transforms described
in [14] and the boundary conditions given by Egs. (18)
and (19), Egs. (16) and (17) can be rewritten as algebraic
equations, namely

o () i O

_[A_(Hafg

N

4¢2 Ren
all - (*1");[32 - (*1)"1]’ (29)

g2

2 mm\ 2|~ (1 —+ 0')2 ~
{(nn) + (7) }t—i— u=0. (30)
The solution of Egs. (29) and (30) is easily obtained and
can be expressed as
u(n,m)

_ [A.(Ha)zgn] ol — (—1)][1 = (~1)"]
Re

42 nmm?

) mm\?2 (1+0)* Gr -
X{("“) (%) +4o4[(nn)2+(mn/a)2]Re} ’
(31)

(1+0a) 5 u(n,m). (32)

o m) = = (nma)* + (mm)

On account of the inversion formula of double finite
Fourier sine transforms [14]

— g S S Rlm, m)sin(nr) sin (%) 6y

the constraints given by Egs. (20) and (21) can be re-
written as

R(x,y)

iiﬁ(zn—mm—l):@ (34)
o (2n—1)2m—1) 16’
ii?@n—lﬂm—l):nza@ (35)
e~ = (2n—1)2m - 1) 16
Let us define the coefficients
~ 2
e 42:5211 (1 1—012(:;1211G13;—Re. (36)

Eq. (31) allows one to conclude that C,, are indepen-
dent of the unknown parameters 4 and 5. Therefore, as a
consequence of Eqs. (32) and (34)—(36), the parameters A
and 5 can be determined by solving the set of equations

;mzl 2n71n(;m71)
_ o’ 2 ’ (37)
4[420% — (1 4+ 6)"n Gr/Re]
00 00 Cn‘m
; Z} [(2n—1)%62 + (2m — 1)"](2n — 1)(2m — 1)
S "4“3’7 . (38)

4(1 + 0)’[440> — (1 + 6)*n Gr/Re]

For prescribed values of ¢ and Gr/Re, Eqgs. (37) and (38)
yield the following expressions of 4 and n:
_ n'c® —4Gr/Re(1 + 0)'F
- l6m262F ’

(39)
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(1+0)

=—-—" 40

L=, (40)

where the dimensionless parameters F; and F, are de-
fined as

F=Y3 i (41)

> - Cn”l
_;ZT - +2m-1%2n-1)2m—-1)
(42)

On account of Egs. (25), (26), (32), (33) and (36), the
Nusselt number Nu can be evaluated by employing the
expression

%: —ty = —% i i;(n,m)?(n,m)
- [4;@2— (1+0)n—

C2
n=1 m=I

1’62+ 2m —1)*

4n2go

(43)

As one can easily verify, Eqgs. (24), (27), (31), (36) and
(39)—(43) allow one to conclude that the dimensionless
parameters f Re, 1, Nu and Nu, are left invariant by the
change ¢ — 1/0. This feature is quite expected since the
boundary conditions are the same on the four walls of
the duct and the change o — 1/0 does not alter the
shape of the duct cross-section. Therefore, in the fol-
lowing, the values of the parameters f Re, 1, Nu and Nug
will be considered only in the interval 0 < ¢ < 1.

According to Egs. (31) and (32), the dimensionless
velocity u and, as a consequence, the dimensionless
temperature ¢ are ill defined in correspondence with an
infinite sequence of negative values of Gr/Re defined by
Gr At 2n— 1>+ 2m — 1))

Re (1+0) ’ (44)

for every positive integer value of both n and m. The

sequence defined by Eq. (44) is monotonically decreas-

ing. According to Eq. (44), the smallest absolute value of

Gr/Re corresponding to a singular solution ranges from

n* for ¢ = 1 to 4n* for ¢ — 0. Indeed, if Gr/Re is given

by Eq. (44) for a pair of positive integers ny and my,

Egs. (29) and (30) allow one to come to the following

conclusions:

o )= (Gr/Re)y(1 + )’ 4d%;

e u(n,m) and t(n,m) are zero unless both n = 2ny — 1
and m = 2my — 1;

e Eq. (34) implies that
?a(2ny — 1)(2my — 1)/16;

o (219 —1,2my— 1) can be obtained by employing
Eq. (32);

u(2ng —1,2mg — 1) =

e Eq. (35) implies that 5= 16¢(2ny — 1,2my—1)/

[m?e(2ny — 1)(2mo — 1)].

Stated differently, when Eq. (44) is fulfilled, —(Gr/Re)
(14 0)*/4¢* is an eigenvalue of the biharmonic operator
V4 in the two-dimensional rectangular domain
{0<x<1, 0<y<oa}. Moreover, Egs. (16) and (17)
show that the dimensionless velocity u(x,y) is the ei-
genfunction of V* corresponding to this eigenvalue. To
summarize, when Eq. (44) holds, the infinite sum given
by the inversion formula (33) to express either u(x,y) or
t(x,y) collapses to a single term. However, as can be
easily checked, neither the distributions u(x,y) and
t(x,y) nor the parameters 4, 1, f Re, Nu and Nu, undergo
any discontinuity with respect to Gr/Re in the neigh-
bourhood of an eigenvalue defined by Eq. (44), so that
no special physical significance seems to be connected
with these eigenvalues. Indeed, in the following sections,
it will be shown that the first eigenvalue of the sequence
defined by Eq. (44) plays a special role in the formula-
tion of the necessary condition for the onset of flow
reversal.

A quite interesting case is the limit dP/dZ — 0,
which corresponds to a purely buoyancy-driven flow,
i.e. to free convection. In this limit, both the parame-
ters A and fRe tend to 0. For any prescribed aspect
ratio g, Eq. (39) reveals that the condition 4 — 0 cor-
responds to a special value of the ratio Gr/Re, which
can be determined as the root of the following equa-
tion:

4.3
LA g:(l-i-()')Fz 0. (45)
Any root, Gr/Re, of Eq. (45) corresponds to a non-
vanishing value of the mean velocity which can be ob-
tained by utilizing the relation Uy = (Re/Gr)(gBATD?/ v).
However, if one fixes the value of o, it is easily verified
that, starting from Gr/Re =0 and decreasing continu-
ously the value of Gr/Re, one first encounters a root of
Eq. (45), i.e. a free convection solution, and then a zero
of Fi, i.e. a singularity of the parameters 4, 5, f Re, Nu
and Nu, as well as of the distributions u(x, y) and #(x, ).
The former, namely the root of Eq. (45), is denoted by
(Gr/Re)" and the latter, namely the zero of F, is denoted
by (Gr/Re)”. By definition, both these values are nega-
tive. In Table 1, values of (Gr/Re)" and (Gr/Re)” are
reported for ¢ ranging from 0.1 to 1.0. Since the values
of (Gr/Re)" are negative, the residual mean velocity U,
associated to the free convection solution is negative in
the case of fluid heating (g,, > 0) and positive in the case
of fluid cooling (g,, < 0).
Finally, it should be pointed out that, in the limit
Gr/Re — 0, ie. in the limit of forced convection,
(31) and (33) yield a dimensionless velocity
distribution u(x,y) coincident with that reported in
[15].
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Table 1
Values of (Gr/Re)', (Gr/Re)", (Gr/Re)", Nu" and (Gr/Re),

a (Gr/Re) (Gr/Re)" (Gr/Re)" Nu” (Gr/Re),

0.1 -271.48 -310.66 -311.27 0.011134 -289.77

0.2 -203.24 -318.23 -328.51 0.21989 -265.01

0.3 -162.08 -341.74 -399.89 1.0950 -285.77

0.4 -136.48 -338.27 -507.45 1.9992 —337.80

0.5 -120.26 -319.20 -637.86 2.3684 -410.61

0.6 —-109.97 -300.93 -777.84 2.4886 —493.25

0.7 -103.57 -287.67 -912.83 2.5261 -573.40

0.8 -99.829 -279.35 —-1026.2 2.5367 -638.59

0.9 -97.950 -275.03 -1100.6 2.5392 -679.22

1.0 -97.409 -273.77 -1125.2 2.5396 —692.18
4. Discussion of the results: friction factor and Nusselt Table 2
number Values of f Re and Nu for a square duct, ¢ =1

Gr/Re fRe Nu

As has been shown in the preceding section, Egs. Present Ref. [3] Present Ref. [3]
(24), (27), (31)—(33), (36) and (39)—(43) allow the evalu- paper paper
ation of the'dlme'nsmnless distributions u(x,y), #(x,y) 0 14207 1423 3.6080 36l
and of the dlmenspnless parameters 4, 1, f Re, Nu and /4 15.226 17,565 3.6965 3.69
Nuy, for any prescribed value of ¢ and Gr/Re. 50 16.244 B 37884 B

Some comparisons can be made between the solution 150 19.913 - 4.1338 -
obtained in the preceding section and other solutions smt/2 22.983 45.365 4.4380 4.27
available in the literature for similar geometries and 250 23.185 - 4.4584 -
boundary conditions. 350 26.137 - 4.7627 -

A quite instructive comparison can be performed by 450 28.829 - 5.0473 -
analysing the solution for the same geometry and for the 550 31.305 - 5.3136 -
same thermal boundary conditions presented in [3]. In- 650 33.600 - 3.5626 -
deed, Han [3] considers a condition of fully developed 730 35.741 B 57958 -

? . . . 850 37.751 - 6.0145 -
ﬂpw as well as the Boussinesq approx1mgt10n. The only 950 39.647 B 6.2198 B
difference between the hypotheses made in [3] and those 1050 41.444 _ 6.4129 _
made in the present paper is in the choice of the refer- 2574 60.320 220.9 8.2786 9.46

ence temperature for the linearization of the equation of
state ¢ = o(T). While in the present paper this reference
temperature is chosen as the mean temperature 7j in a
duct section, Han [3] chooses the wall temperature 7.
Both 7, and T,, change linearly in the Z-direction. Then,
while in the present paper the change in the Z-direction
of the reference mass density ¢(7) is neglected, in Han’s
paper the change in the Z-direction of the reference mass
density ¢(7) is neglected. As a consequence, a com-
parison between the solution found in the present paper
and that found by Han [3] allows one to value the im-
portance of the choice of the reference temperature in
developing theoretical predictions of mixed convection
flows. An extended investigation on this subject referring
to plane-parallel channel flows can be found in [13].
Table 2 displays the above-mentioned comparison be-
tween Han’s solution and the present paper’s solution.
More precisely, the comparison is performed by con-
sidering values of the dimensionless parameters f Re and
Nu for a square duct, ¢ = 1. Table 2 shows that the
discrepancies with the values reported by Han [3] for
positive values of Gr/Re increase with Gr/Re and are
specially strong for the parameter /' Re. For instance, if

Gr/Re = 251* ~ 2435.2, the value of f Re predicted by
Han is almost four times that found in the present paper.
There is an agreement with the analysis performed in
[13], where it is pointed out that the friction factor is a
parameter which is very sensitive to the choice of ref-
erence temperature.

Another interesting comparison can be made by
considering the limit ¢ — 0. In this limit, Egs. (24), (27),
(31), (36), (39) and (40) yield

o 4Oy 1
fR‘f:{” 8Rezl(2n—1)2[4(2n—1)4“4+Gr/Re]}

n

- 1

7 } ; (46)
4(2n—1)"n*+ Gr/Re

e
{

o 1 -1
2 (2n—1)*[4(2n — 1)*n* + Gr/Re] }

x 1
> 4(2n — 1)*n* 4 Gr/Re 47
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The values of fRe and Nup obtained by Eqs. (46) and
(47) are expected to coincide with those obtained for a
parallel-plate channel. Indeed, for the latter geometry, a
closed-form solution of the momentum and energy
balance equations exists, expressed in terms of trigono-
metric and hyperbolic functions [12,16]. The special
symmetry of the parallel-plate channel implies that this
solution can be employed both for the H1 boundary
conditions and for the H2 boundary conditions. It is
easily verified that an approximate evaluation of f Re
and Nuy obtained by employing Eqgs. (46) and (47) with
sums truncated to 200 terms is sufficient to obtain a
complete agreement with the values of these quantities
tabulated in [12].

Finally, an important comparison can be made by
considering the limit Gr/Re — 0, i.e. the special case of
forced convection. As has been pointed out in the pre-
ceding section, in the limit Gr/Re — 0, the dimensionless
velocity distribution u(x,y) evaluated through Egs. (31)
and (33) agrees exactly with the fully developed velocity
distribution for isothermal flow in a rectangular duct
reported in [15]. Moreover, in this limit, also the di-
mensionless parameter A expressed by Eq. (39) coincides
with that evaluated by employing the results for iso-
thermal flow obtained in [15]. In [2], a correlation which
allows one to evaluate Nu for a given aspect ratio o is
reported for the case of laminar forced convection with
H1 boundary conditions, namely

Nu = 8.235(1 — 2.0421¢ + 3.0853¢% — 2.47654°
+ 1.0578¢* — 0.18610°). (48)

By employing Table 3, the values of Nu evaluated
through Eq. (43) can be compared with those which can
be obtained by the correlation which appears in Eq. (48).
Table 3 shows that there exists a very fair agreement
between the values obtained through Eq. (43) and those
evaluated by the correlation reported in [2], the relative
discrepancy being less than 0.085%.

Tables 2, 4 and 5 display values of f'Re and Nu re-
ferring to ¢ =1 (square duct) and ¢ = 0.5 both for

Table 3
Values of Nu in the case of forced convection, Gr/Re — 0

g Nu

Present paper Ref. [2]
0.1 6.7850 6.7879
0.2 5.7377 5.7383
0.3 4.9899 4.9929
0.4 4.4719 4.4756
0.5 4.1233 4.1258
0.6 3.8946 3.8963
0.7 3.7496 3.7518
0.8 3.6638 3.6665
0.9 3.6205 3.6231
1.0 3.6080 3.6102

Table 4
Values of f Re and Nu for a square duct, ¢ = 1
Gr/Re fRe Nu
=50 12.068 3.4225
—-150 7.2339 3.0376
=250 1.5208 2.6367
-350 —5.4068 2.2248
—450 —-14.083 1.8095
-550 -25.411 1.4015
—-650 —41.057 1.0147
=750 —64.461 0.66584
-850 —104.06 0.37346
-950 —187.56 0.15605
—-1050 —489.90 0.029275
Table 5
Values of f Re and Nu for ¢ = 0.5
Gr/Re fRe Nu
-550 —47.378 0.33753
—450 —14.420 1.2143
-350 —2.4858 2.1200
=250 4.5707 2.8657
-150 9.6696 3.4526
-50 13.753 3.9215
0 15.548 4.1233
50 17.220 4.3081
150 20.275 4.6370
250 23.029 4.9247
350 25.555 5.1818
450 27.899 5.4157
550 30.093 5.6312
650 32.161 5.8319
750 34.121 6.0204
850 35.987 6.1985
950 37.770 6.3676
1050 39.479 6.5288

positive and for negative values of the ratio Gr/Re. It
must be pointed out that the discussion of the case
Gr/Re < 0 needs some additional care. In fact, it has
been shown in the preceding section that, when
Gr/Re < 0, the solution displays singularities. For a
fixed o, the singularity with the smallest absolute value
of Gr/Re is encountered for Gr/Re = (Gr/Re)"”. Values
of (Gr/Re)" for different values of ¢ have been reported
in Table 1. A similar circumstance has been already
detected for fully developed and laminar mixed con-
vection in uniformly heated ducts with non-rectangular
geometries, as, for instance, in the case of a circular duct
[11] and in the case of a parallel-plate channel [12]. Al-
though, to my knowledge, no rigorous proof exists, the
singularity with the smallest absolute value of Gr/Re can
be somewhat connected to the breakdown of the
stability of the laminar solution [11,12]. Further inves-
tigations in this direction would require a stability
analysis of the laminar velocity and temperature distri-
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Fig. 2. Plots of /' Re and Nu vs o.

butions, which is beyond the aims of the present paper.
However, in the following, the study for negative values
of Gr/Re will be restricted to the interval (Gr/Re)” <
Gr/Re < 0. Tables 2, 4 and 5 reveal that both /' Re and
Nu are strictly increasing functions of the ratio Gr/Re. In
particular, Tables 4 and 5 clearly show the change of
sign which affects fRe for Gr/Re = (Gr/Re)". Indeed,
the values of f Re are negative for (Gr/Re)” < Gr/Re <
(Gr/Re)". A negative value of f Re can be ascribed to the
occurrence of flow reversal next to the duct walls, for the
following reason. As can be inferred by means of
Eq. (23), a negative value of f Re implies a negative av-
erage wall value of the component of Vu along the in-
ward normal direction. Then, there exist regions next to
the duct walls where u is negative and this corresponds to
flow reversal. Obviously, this conclusion should not lead
to the wrong deduction that flow reversal occurs only
when f Re < 0. The necessary condition for the onset of
flow reversal will be discussed in the next section.

In Fig. 2, plots of fRe and of Nu versus ¢ are re-
ported for various values of Gr/Re. This figure shows
that, while in the case of forced convection both f Re
and Nu are decreasing functions of the aspect ratio o, the
behaviour of these parameters may be non-monotonic
for mixed convection and depends strongly on the ratio
Gr/Re. Specially evident is the local minimum which
characterizes the dependence of Nu on ¢ for Gr/Re =
—300. Moreover, it can be pointed out that, for Gr/Re =
—300, the parameter f Re becomes zero when o ~ 0.6,
and is negative when ¢ is approximately greater than 0.6.
In this range, flow reversal is expected to occur. Finally,
as is shown especially by the plots of f Re, the effect of
buoyancy is enhanced as the aspect ratio increases.

5. Discussion of the results: velocity and temperature
distributions

On account of Egs. (31)—(33), (36), (37) and (41), the
dimensionless velocity u(x,y) and the dimensionless
temperature #(x,y) can be expressed as follows:

u(x,y) 4FIZZC”,S1H[2;171) x|

n=1 m=

(2m — l)ny]7 (49)

X sin
o

(1+0)
4F

- Comsin[(2n — 1)mx]
X
ZZanl Vo2 + (2m—1)°

n=1 m=1

t(xvy) = -

X sin [M} (50)

[

As can be inferred by an analysis of the dimensionless
velocity behaviour as implied by Eq. (49), for a fixed
aspect ratio ¢ there exists a negative real number,
(Gr/Re)', such that flow reversal occurs whenever
Gr/Re < (Gr/Re)'. In particular, the onset of flow
reversal takes place at the four corners between neigh-
bouring walls, namely next to the positions (0,0), (0,q),
(1,0) and (1,0). This circumstance is illustrated in Fig. 3,
where plots of the distribution of the dimensionless ve-
locity u either on the plane x = 0.05 or on the plane
y=0.01 are reported for different negative values of
Gr/Re, with reference to the aspect ratio ¢ = 0.5. Strictly
speaking, flow reversal occurs if there exists a domain
where the dimensionless velocity u is negative. On ac-
count of the no-slip condition at the walls, it is easily
shown that the onset of flow reversal in a neighbour-
hood of one of the four corners between neighbouring
walls is accompanied by a sign change of the derivative
0?u/0x0y evaluated at that corner. Obviously, the sym-
metry of the solution implies that the onset of flow re-
versal is simultaneous at the four corners, so that one
can perform the analysis with reference to the corner
(0,0). Then, the onset of flow reversal implies that the
sign of the derivative 8?u/0xdy in a small neighbourhood
of (0,0) changes from positive to negative. By employ-
ing Eqgs. (31), (36) and (49), this derivative can be ex-
pressed as
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Fig. 3. Plots of u vs y for x = 0.05 (upper frame) and of u vs x for y = 0.01 (lower frame), in the case ¢ = 0.5.

4" iy i 21— 1)26? + (2m— 1)*]cos[(2n — 1)mx]

><{4rc [(2}1 16>+ (2m—1)"] + (1+0)*Gr/Re} "
xcos{(zm 01) } (51)

As is shown by Eq. (51), the derivative d’u/0xdy be-
comes singular in the limit (x,y) — (0,0). Indeed, in this
limit, the double sum which appears in Eq. (51) tends to
+o00, so that the sign of 0%u/0xdy in a small neigh-
bourhood of (0,0) coincides with the sign of the quan-
tity Fi. As is shown by Eqgs. (31), (36) and (41), F] is a
function of ¢ and Gr/Re. These equations reveal that, if
o is fixed, the quantity F is positive for —4n*(1 + ¢%)*/
(1+0)* < Gr/Re < 0 and is singular for Gr/Re = —4r*
(1+6)?/(1+0)*. This singularity leads to a sign
change and this sign change leads to the onset of flow
reversal. Then, the quantity (Gr/Re)’ is given by

To summarize, (Gr/Re) is the value of Gr/Re below
which flow reversal occurs, the onset of this phenom-
enon being located next to the four corners between
neighbouring walls, namely the positions (0,0), (0,q),
(1,6) and (1,0). Obviously, (Gr/Re)’ is the smallest term
of the sequence defined by Eq. (44). Values of (Gr/Re)’
for different aspect ratios are reported in Table 1. This
table contains somewhat a summary of the features
which characterize the flow for a fixed aspect ratio, in
the case Gr/Re < 0. If (Gr/Re)’ < Gr/Re < 0, no flow
reversal occurs. If (Gr/Re)" < Gr/Re < (Gr/Re)', flow
reversal occurs and buoyancy becomes dominant, until
flow is purely buoyancy driven when Gr/Re = (Gr/Re)".
If (Gr/Re)” < Gr/Re < (Gr/Re)", the local values of the
dimensionless velocity and temperature as well as the

parameters A, # and Nu undergo increasingly rapid
changes with Gr/Re and become singular for
Gr/Re = (Gr/Re)". As is shown in Table 1, the absolute
value of (Gr/Re)' decreases monotonically with o, i.e.
the onset of flow reversal is assisted if the aspect ratio
increases.

The distributions u(x, y) and ¢(x,y) are plotted for a
square duct (¢ = 1) in Figs. 4 and 6. In particular, Fig. 4
refers to Gr/Re = 1000, while Fig. 6 refers to the case
Gr/Re = —1000. The case considered in Fig. 4 corre-
sponds either to upward flow (Uy > 0) in a heated duct
(g, > 0) or to downward flow (U < 0) in a cooled duct
(g, < 0). With reference to the first circumstance, the
four local maxima of u(x,y) displayed in Fig. 4 can be
interpreted as flow enhancement next to a corner be-
tween neighbouring heated walls. Moreover, by con-
sidering upward flow in a heated duct, the local
minimum of u(x, y) corresponding to the centre (0.5,0.5)
represents the minimum velocity associated to a point of
minimum temperature (and, hence, of maximum den-
sity). Indeed, Fig. 4 shows that the dimensionless tem-
perature ¢ displays a minimum at the position (0.5,0.5).
Although the local minimum of u(x, y) corresponding to
the centre (0.5,0.5) for Gr/Re = 1000 is not visible in
Fig. 4, it is represented markedly in Fig. 5. The latter
figure shows the behaviour of u versus x for fixed values
of y, with reference to a square duct with Gr/Re = 1000,
i.e. for the same case as examined in Fig. 4.

An analysis of Fig. 6 reveals two relevant features of
the distributions u(x,y) and #(x,y) for Gr/Re = —1000:
flow reversal and the occurrence of positive values of .
The former feature is quite expected on account of the
investigation on flow reversal performed at the begin-
ning of this section. Indeed, by employing Table 1, one
expects flow reversal to occur in a square duct for any
value of Gr/Re lower than —97.409. On the other hand,
the occurrence of values of ¢ greater than zero is a
somewhat unexpected and interesting feature which can
be interpreted as follows. The case considered in Fig. 6
corresponds either to upward flow (U > 0) in a cooled
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Fig. 4. Plots of u(x,y) (upper frame) and #(x,y) (lower frame) for ¢ = 1 and Gr/Re = 1000.
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square duct (¢ = 1) with Gr/Re = 1000.
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duct (g,, < 0) or to downward flow (U, < 0) in a heated
duct (g,, > 0). Then, as is easily shown by employing
Eq. (15), if one assumes that downward flow in a heated
duct occurs, the condition ¢ > 0 implies that there exist
positions within a duct cross-section where T > T,.
Obviously, this is not a violation of the second law. In
fact, for any choice of the axial position Z, it is always
possible to find another axial position Z’' such that
TW(Z')>T(X,Y,Z), even if X and Y are such that
T(X,Y,Z) > T,,(Z). On the other hand, as is explained in
the following, the above effect is governed by the Hl
boundary conditions which imply a linear axial change
of the wall temperature 7. Indeed, the existence of
positions where ¢ > 0 is merely a consequence of an
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Fig. 6. Plots of u(x,y) (upper frame) and #(x,y) (lower frame) for a square duct (¢ = 1) and Gr/Re = —1000.
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extremely intense flow reversal. The effect of flow re-
versal produces an axial heat transfer in a direction
opposite to the net fluid flow and, as a consequence, an
extra fluid heating. In other words, the fluid experiences
a pre-heating (in the case of a heated duct) or a pre-
cooling (in the case of a cooled duct) induced by flow
reversal.

As is well known, in fully developed duct flow con-
vection, the occurrence of temperature fields which do
not undergo a monotonic change moving from the wall
to the centre of the duct cross-section is usually con-
nected to phenomena of internal heat generation such as
viscous dissipation [17,18]. From a strictly mathematical
viewpoint, the effect of flow reversal can be compared to
a heat generation, as can be easily checked by an analysis
of Eq. (14). This equation shows that, for a heated duct,
the axial convection term is analogous to a heat gener-
ation term. According to this analogy, the equivalent
power generated is negative for direct flow (U/U, > 0)
and positive for reversed flow (U/U, < 0). A more ap-
parent representation of the occurrence of positive di-
mensionless temperatures can be found in Fig. 7, which
also refers to a square duct (¢ = 1). In this figure, three
different plots of #(x,0.1) versus x are reported for
Gr/Re = —1100, —1070 and —1000. In all the examined
cases, positive values of ¢ are displayed in the region next
to the wall x = 0. As can be checked out in Table 1, the
ratios Gr/Re considered in this figure are very close to the
value of (Gr/Re)" for a square duct, i.e. —1125.2. As has
been pointed out in the preceding sections, when
Gr/Re = (Gr/Re)", both the distributions u(x,y) and
t(x,y) become singular. This explains the increasing
sensitivity of the dimensionless velocity field and of the
dimensionless temperature field to changes of Gr/Re.

Fig. 6 shows that the onset of the effect of pre-heating
(pre-cooling), namely the occurrence of positive values
of ¢, takes place next to the four corners between
neighbouring walls. Then, the necessary and sufficient
condition for the onset of this effect can be determined

0.5 é_\
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Fig. 7. Plots of ¢ vs x for y = 0.1, in the case of a square duct

(e=1).

by a method similar to that invoked for the onset of flow
reversal. One can easily conclude that positive values of ¢
exist only when the derivative 9%¢/0x0y evaluated at
(0,0) becomes positive. Therefore, for any fixed value of
o there exists a negative real number (Gr/Re), such that
positive values of ¢ occur if and only if Gr/Re <
(Gr/Re),. Obviously, on account of Egs. (31), (36) and
(50), the values of (Gr/Re), for a given o can be obtained
by determining the zeros of

&t
Ox0y

x=0, y=0
2(1 4 0)

(
A

+(@2m -1

4n
xiil/ﬂn“[ —1)%?

n=1 m

+ (1+0)'Gr/Re}. (53)

Values of (Gr/Re), for different aspect ratios ¢ are re-
ported in Table 1. This table shows that
(Gr/Re), > (Gr/Re)" for small values of g, so that the
free convection solution displays the pre-heating (pre-
cooling) effect. On the other hand, for values of ¢ ap-
proximately greater than 0.4 and smaller than 1,
(Gr/Re), is such that (Gr/Re)" > (Gr/Re), > (Gr/Re)".

It must be pointed out that the effect of pre-heating
(pre-cooling) does not occur in the limiting case
g — 0, i.e. for a parallel-plate channel. Indeed, as has
been recalled in the preceding section, a closed-form
solution of the momentum and energy balance equa-
tions is available in this special case [12,16]. Also for
fully developed laminar mixed convection in a vertical
circular duct with a uniform wall heat flux, a closed-
form solution of the balance equations, expressed in
terms of Bessel functions, is available in the literature
[11,19]. As can be easily checked, even in this case, no
pre-heating or pre-cooling effects are induced by flow
reversal.

The case of free convection, i.e. the case of a
purely buoyancy-driven flow, can be investigated by
considering Gr/Re = (Gr/Re)" for a given aspect ratio
a. Obviously, in the case of free convection, the fric-
tion factor f is identically zero, since a purely buoy-
ancy-driven flow is obtained in the limit dP/dZ — 0.
The Nusselt number for free convection, evaluated
according to the definition expressed by Eq. (25), is
denoted through the symbol Nu”. Values of Nu” for
different aspect ratios are reported in Table 1. These
values allow one to conclude that Nu” strictly increases
with ¢ and reaches a maximum for ¢ = 1. In Fig. 8§,
plots of the dimensionless velocity distribution u(x,y)
and of the dimensionless temperature #(x,y) for the
case of free convection are reported for a square
duct. On account of Table 1, the condition of free
convection in a square duct is reached for



A. Barletta | International Journal of Heat and Mass Transfer 45 (2002) 641-654 653

\
\\\§\§\f<

““&’,3’77;/// ' N
e
Laghiiisit i
T IS
RN e

%

T
S

' [ 77
W m"llll[,,...!!,,l,l,_/,//,

ot ~.““‘ 'OIA -."’ 1

Fig. 8. Plots of u(x,y) (upper frame) and #(x,y) (lower frame) for a square duct (¢ = 1) in the case of free convection, i.e. for

Gr/Re = (Gr/Re)".

Gr/Re = (Gr/Re)" = —273.77. The plot of u(x,y) in
Fig. 8 shows that a slight flow reversal occurs, while
the plot of #(x,y) shows that there are no points with
t >0, i.e. there is no pre-heating or pre-cooling effect.

6. Conclusions

Fully developed and laminar mixed convection in a
rectangular duct has been investigated with reference to
an H1 thermal boundary condition, i.e. an axially
uniform wall heat flux and a peripherally uniform wall
temperature have been assumed. The Boussinesq
approximation has been invoked and the reference
temperature for the linearization of the equation of
state ¢ = o(7) has been chosen as the mean tempera-
ture in a duct cross-section, 7. The governing equa-
tions have been written in a dimensionless form
revealing that both the dimensionless velocity and the
dimensionless temperature are two-dimensional fields,
so that they can be expressed as u(x,y) and #(x,y).
These fields are uniquely determined by a pair of
dimensionless parameters, i.e. the ratio Gr/Re and the
aspect ratio . The dimensionless governing equations
have been solved analytically by employing a finite
Fourier transforms method. For a fixed aspect ratio o,
the following relevant features of the solution have
been pointed out.

e There exists a negative real number (Gr/Re) such
that for Gr/Re < (Gr/Re)' the velocity field displays
the phenomenon of flow reversal, i.e. there exist do-
mains within the duct where the dimensionless vel-
ocity u = U/Uj is negative.

o There exists a negative real number (Gr/Re)” <
(Gr/Re)' such that: the Fanning friction factor f van-
ishes for Gr/Re = (Gr/Re)"; there exist no zeros of f
for 0 > Gr/Re > (Gr/Re)". When Gr/Re = (Gr/Re)"
a purely buoyancy-driven flow (free convection)
occurs.

e There exists a negative real number (Gr/Re), such
that for Gr/Re < (Gr/Re), there are domains within
the duct where the dimensionless temperature ¢ as-
sumes positive values. In other words, for
Gr/Re < (Gr/Re), the fluid experiences pre-heating
(pre-cooling) effects.

e There exists a negative real number (Gr/Re)” <
(Gr/Re)" such that: both the dimensionless tempera-
ture field u(x,y) and the dimensionless temperature
field ¢(x,y) are singular for Gr/Re = (Gr/Re)"’; there
exist no zeros of the friction factor f in the open in-
terval (Gr/Re)” < Gr/Re < (Gr/Re)"; there exist no
singularities of the distributions u(x,y) and #(x,y)
for (Gr/Re)" < Gr/Re < 0.

Values of (Gr/Re)’, (Gr/Re)", (Gr/Re)” and (Gr/Re),

have been tabulated for different aspect ratios.

The solution obtained in the present paper has been
compared with other existing solutions referring to the
same heat transfer problem or to special cases. In par-
ticular, an interesting comparison with the analytical
solution found by Han [3] for the same heat transfer
problem has revealed that quite important discrepancies
exist in the values of f Re and of Nu. These discrepancies
are due to the different choice of the reference tem-
perature for the linearization of the equation of state
0 = o(T). Indeed, Han [3] performed the linearization
around the wall temperature T,.
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